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Random walks are simulated on finite stages of construction of Eden trees in dimensionsD52 and 3, and
it is shown that the mean-square displacement^RN

2 & of N-step walks and the mean number of distinct visited
sites^SN& obey finite-size scaling. Accurate estimates of the dimensions of the random walksDw are obtained
and the relation̂SN&;ND/Dw/( logN)a is shown to hold in these fractals, with positive exponentsa. Then the
Alexander-Orbach scaling relationDs52D/Dw is satisfied, whereDs is the spectral dimension, contrary to
previous proposals in these and other treelike structures.@S1063-651X~96!50110-8#

PACS number~s!: 05.40.1j, 05.50.1q

In 1982 Alexander and Orbach mapped the random walk
problem onto the problem of vibrations with scalar elasticity
on a fractal system@1#, and obtained the scaling relation

Ds52DF /Dw , ~1!

whereDs is the spectral dimension of vibrations,Dw is the
random walk dimension, andDF is the fractal dimension of
the substrate.

In the random walk problem,Dw is defined in the asymp-
totic behavior of the mean-square displacement ofN-step
walks

^RN
2 &;N2/Dw. ~2!

Ds appears in the asymptotic form of the mean number of
distinct sites visited by the walker~whenDs,2) @2#:

^SN&;NDs/2. ~3!

Relation ~1! is obtained considering that the fractal dimen-
sion of the region visited by the walker is equal toDF ,
indicating an isotropic probability distribution of finding it
within the traveled distance. It is a well accepted relation
between dynamical and static exponents; see, for instance,
the review articles@3# and @4#. It may be used, for example,
to model real self-similar structures whoseDs is known from
experiments@4#.

Many efforts have been done to test relation~1! on several
fractals@5–10#. In treelike structures, such as Eden trees and
diffusion-limitted aggregates~DLAs!, results of numerical
simulations suggested that it was violated@7–9#. However,
the results of Nakanishi and Herrmann@8# on Eden trees
indicated a crossover from a short-time regime to a long-time
different one, and the asymptotic behavior was not com-
pletely understood. Thus the validity of relation~1! in any
fractal is controversial. The aim of this work is showing that
it is valid in the Eden trees with logarithmic corrections in
Eq. ~3!, then explaining the divergences found in these and
other structures.

Recently it was proved that relation~1! is valid in a class
of deterministic fractals, the Sierpinski carpets, if logarithmic
corrections are incorporated in Eq.~3! @10#:

^SN&;
NDs/2

~ logN!a , ~4!

wherea is a positive exponent depending onDF and the
lacunarity. This asymptotic behavior resembles the two-
dimensional case, wherea51 andDs52 @11#. This result
discarded a previous proposal of violation of relation~1! in
the carpets@6#, based on an analysis which did not consider
the correction in Eq.~4!.

In this work we study random walks on Eden trees in two
and three dimensions.^RN

2 & and^SN& are calculated for ran-
dom walks confined on finite stages of construction of these
lattices, and analyzed using finite-size scaling techniques,
which separate finite-size effects and the true critical behav-
ior in a convenient way@12#. The reliability of this technique
was proved when applied to finitely ramified fractals where
Dw is exactly known@13#. We will show that the asymptotic
relations~2! and~4! are valid for those fractals, withDw and
Ds satisfying the Alexander-Orbach scaling relation~1!. We
will also present estimates ofDw and the logarithmic correc-
tion exponentsa.

Eden trees are constructed by modifying the conventional
Eden aggregation process@14#. Starting from one occupied
site on aD-dimensional lattice, sequential growth occurs by
additional occupation of one of the perimeter sites~randomly
chosen! at each time step. In the conventional process, the
perimeter sites are those which neighbor at least one occu-
pied site. However, in the Eden trees, empty sites which
neighbor more than one site become ineligible for occupa-
tion @7#. It gives rise to compact structures~dimension
DF5D) with no loops.

In D52 we constructed 40 trees with volumes~number
of sites! V5104, 23104, and 33104, and inD53 we con-
structed 40 trees withV523104, 33104, and 43104. On
each of those finite aggregates, 105 random walks were
simulated, with initial sites randomly chosen over the lattice.
The maximum number of steps were 53104 and 23104 on
the largest lattices inD52 andD53, respectively. Then
^RN

2 &V and^SN&V are estimated forN-step walks confined on*Electronic address: reis@if.uff.br
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those aggregates~the brackets indicate means over both the
ensemble of walks and the ensemble of aggregates with vol-
umeV). The accuracy of these estimates is around 1%.

We propose the finite-size scaling relation

^RN
2 &V

1/2'V1/Df ~V1/DN2nw!, ~5!

where f is some function of the variablex5V1/DN2nw, and

nw51/Dw . ~6!

This relation was already verified in deterministic fractals
embedded in two and three-dimensional lattices~Sierpinski
gaskets, carpets, and pastry shells! @13# .

The plots ofy5^RN
2 &V

1/2/V1/D versusx are curves for each
V which collapse into a single curve when the correct value
of nw is chosen. In Figs. 1 and 2 we show the plots of some
data forD52 andD53, respectively, with the best esti-
mates ofnw . The collapse of data for differentV is obtained
for walks with N.50 in D52 and N.200 in D53
(x'25 andx'7 for the smallest trees, respectively!. It in-
dicates that for smallN we cannot observe the true asymp-
totic behaviour and, as we have to deal with data for large
N in finite lattices, it is essential to use finite-size scaling to
obtain reliable results.

In Table I we show the corresponding estimates ofDw .
Together with relation~1! they give the estimates ofDs also
shown in Table I. The previous best estimates ofDw were
2.4760.03 in D52 and 4.0860.09 in D53 @8#, obtained
using data of different small aggregates analyzed separately.

According to finite-size scaling, the same variablex is
expected to describe the finite-size behavior of other physical
quantities. For the mean number of distinct visited sites we
propose the relation

^SN&V'
V

~ logN!a g~V1/DN2nw!. ~7!

WhenV→` it is reasonable that̂SN& does not depend on
V, thusg(x);x2D whenx→`. Then Eq.~4! with Ds given
by Eq. ~1! is satisfied.

In Figs. 3 and 4 we plotz5^SN&(lnN)a/V versusx in two-

TABLE I. Random walk dimensions (Dw), spectral dimensions
(Ds), and logarithmic correction exponentsa for ^SN& in Eden
trees embedded inD-dimensional hypercubic lattices.

D Dw Ds a

2 2.8260.06 1.4260.04 0.860.1
3 3.8560.15 1.5660.06 0.960.1

FIG. 1. Plot ofy5^RN
2 &V

1/2/V1/2 versusx5V1/2N2nw for random
walks on finite stages of construction of two-dimensional Eden
trees.

FIG. 2. Plot ofy5^RN
2 &V

1/2/V1/3 versusx5V1/3N2nw for random
walks on finite stages of construction of three-dimensional Eden
trees.

FIG. 3. Plot ofz5^SN&V(lnN)
a/V versusx5V1/2N2nw for ran-

dom walks on finite stages of construction of two-dimensional Eden
trees.
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and three-dimensional Eden trees, respectively. The expo-
nentsnw are the previous central estimates, and the logarith-
mic correction exponentsa are the ones which provide the
best collapses of curves for differentV. Note that deviations
from a single curve occur only for largex in the smallest
lattices, corresponding to smallN.

Those plots prove the validity of relation~7! for Eden
trees and consequently the validity of the asymptotic form
~4! with Ds given by the scaling relation~1!. The final esti-
mates of the exponentsa are also shown in Table I.

An alternative finite-size scaling relation

^SN&V'Vgg~V1/DN2nw! ~8!

would give the asymptotic form~3! for ^SN& with
Ds52gD/Dw , which would not agree with relation~1! if
gÞ1. This hypothesis is not supported by our data for any
value ofg both inD52 andD53, confirming the asymp-
totic form ~4!.

From Eqs.~1!, ~2!, and ~4! we obtain a relation between
the volume visited by the walkerVv is and the accessible
volumeVac within a radiusR:

Vv is

Vac
;

1

~ logR!a . ~9!

As previously observed@6–9#, the density of the set of vis-
ited sites decreases faster than the density of accessible sites,
but, as shown above, it occurs only with a logarithmic ratio
between these densities. Then the original assumption
(Vv is;Vac) is not correct, but the essential ingredients of the
problem are captured and the final result~Eq. ~1!! is valid. It
is also explained why an effective spectral dimension
Ds
ef f,Ds must be found fitting data to Eq.~3!. The compari-

son of the estimates ofDs in Table I and the previous ones
@7,8# confirms this trend.

The logarithmic corrections in̂SN& were already ex-
pected in two-dimensional Eden trees since an exponent
a51 is present in the exact solution of two-dimensional
Euclidean lattices. The correction in three-dimensional Eden
trees, however, is a surprising result. It opens the question of
the dependence of exponenta on the fractal geometry. The
results in some Sierpinski lattices (a in the range 0.120.5)
suggested that it was more important in infinitely ramified
fractals@10#, but the large values in the Eden trees, which are
finitely ramified, discard this hypothesis. Further investiga-
tions will be necessary to find the origin of these corrections.

Previous estimates ofDs in DLAs also indicated a value
smaller than 2DF /Dw @9#. Similar investigations would be
interesting in these structures, which model various experi-
mental aggregates. Based on the discussion above, we expect
that it will confirm once more the scaling relation~1!.
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FIG. 4. Plot ofz5^SN&V(lnN)
a/V versusx5V1/3N2nw for ran-

dom walks on finite stages of construction of three-dimensional
Eden trees.
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