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Scaling for random walks on Eden trees
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Random walks are simulated on finite stages of construction of Eden trees in dimdbsighand 3, and
it is shown that the mean-square displacen{&g) of N-step walks and the mean number of distinct visited
sites(Sy) obey finite-size scaling. Accurate estimates of the dimensions of the randomake obtained
and the relatior{ Sy) ~ NP/Pw/(logN)* is shown to hold in these fractals, with positive exponeatThen the
Alexander-Orbach scaling relatidb,=2D/D,, is satisfied, wher®g is the spectral dimension, contrary to
previous proposals in these and other treelike struct{igd€63-651X%96)50110-§

PACS numbsdis): 05.40:+j, 05.50+q

In 1982 Alexander and Orbach mapped the random walk Recently it was proved that relatidf) is valid in a class
problem onto the problem of vibrations with scalar elasticityof deterministic fractals, the Sierpinski carpets, if logarithmic
on a fractal systeml], and obtained the scaling relation corrections are incorporated in E@) [10]:

D.=2D¢/D,,, (1) (S~ NP2 @

N (logN)
whereDy is the spectral dimension of vibratior,, is the
random walk dimension, anl¢ is the fractal dimension of Wwhere a is a positive exponent depending @y and the
the substrate. lacunarity. This asymptotic behavior resembles the two-

In the random walk problen),, is defined in the asymp- dimensional case, wher@=1 andD¢=2 [11]. This result
totic behavior of the mean-square displacemeniNestep  discarded a previous proposal of violation of relatidn in
walks the carpet$6], based on an analysis which did not consider

the correction in Eq(4).
(RZ)~N?Pw, 2) In this work we study random walks on Eden trees in two
and three dimension$R2) and(S,) are calculated for ran-
D, appears in the asymptotic form of the mean number oflom walks confined on finite stages of construction of these

distinct sites visited by the walkéwhen D <2) [2]: lattices, and analyzed using finite-size scaling techniques,
which separate finite-size effects and the true critical behav-
(S~ NPs2, 3 ior in a convenient way12]. The reliability of this technique

was proved when applied to finitely ramified fractals where
Relation (1) is obtained considering that the fractal dimen- Dy, is exactly knowr[13]. We will show that the asymptotic
sion of the region visited by the walker is equal By, relations(2) and(4) are valid for those fractals, with,, and
indicating an isotropic probability distribution of finding it Ds satisfying the Alexander-Orbach scaling relatidn We
within the traveled distance. It is a well accepted relationwill also present estimates &f,, and the logarithmic correc-
between dynamical and static exponents; see, for instancpn exponentsy.
the review article$3] and[4]. It may be used, for example, Eden trees are constructed by modifying the conventional
to model real self-similar structures whae is known from ~ Eden aggregation procefs4]. Starting from one occupied
experimentg4]. site on aD-dimensional lattice, sequential growth occurs by
Many efforts have been done to test relati@non several ~additional occupation of one of the perimeter sit@sdomly
fractals[5—10. In treelike structures, such as Eden trees ang¢hosen at each time step. In the conventional process, the
diffusion-limitted aggregate$DLASs), results of numerical perimeter sites are those which neighbor at least one occu-
simulations suggested that it was violafgd-9]. However, —pied site. However, in the Eden trees, empty sites which
the results of Nakanishi and Herrmaf8] on Eden trees neighbor more than one site become ineligible for occupa-
indicated a crossover from a short-time regime to a long-timéion [7]. It gives rise to compact structurggimension
different one, and the asymptotic behavior was not comDg=D) with no loops.
pletely understood. Thus the validity of relatigh) in any In D=2 we constructed 40 trees with volum@simber
fractal is controversial. The aim of this work is showing thatof siteg V=10 2x10* and 3x 10%, and inD=3 we con-
it is valid in the Eden trees with logarithmic corrections in structed 40 trees witV=2x10%, 3x10%, and 4x 10*. On
Eq. (3), then explaining the divergences found in these andtach of those finite aggregates,®1fandom walks were
other structures. simulated, with initial sites randomly chosen over the lattice.
The maximum number of steps werex80* and 2x 10* on
the largest lattices ilD=2 and D=3, respectively. Then
"Electronic address: reis@if.uff.br (R2)y and(Sy)y are estimated foN-step walks confined on
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03F T T T T 71711 T T TABLE I. Random walk dimensiond,), spectral dimensions
. (Dg), and logarithmic correction exponents for (Sy) in Eden
S, trees embedded iB-dimensional hypercubic lattices.
0.2 I- \‘xn‘ sV = 10000 7
. aV = 20000 D Duw Ds a
Q ., =V = 30000 2.82+0.06 1.42:0.04 0.8:0.1
5> o1L _ _ 3 3.85:0.15 1.56-0.06 0.9-0.1
S~ 0,09 ] v,=0.356 T
> 0.08 |- . -
N I “ —
g 8'32 B . i The plots ofy=(RZ)¥?/V'P versusx are curves for each
= 0'05 B s | V which collapse into a single curve when the correct value
‘ ", of »,, is chosen. In Figs. 1 and 2 we show the plots of some
0.04 - s 7] data forD=2 and D=3, respectively, with the best esti-
0.03 ”°~! | mates ofy,,. The collapse of data for differem is obtained
’ : for walks with N>50 in D=2 and N>200 in D=3
I T I B | L (x~25 andx~7 for the smallest trees, respectivelit in-
4 5 6 78910 20 30 40 dicates that for smalN we cannot observe the true asymp-
V1/2N-v. totic behaviour and, as we have to deal with data for large

N in finite lattices, it is essential to use finite-size scaling to
obtain reliable results.

In Table I we show the corresponding estimateDgf.
Together with relatior{l) they give the estimates @ also
o shown in Table I. The previous best estimatedDqf were
those aggregateshe brackets indicate means over both thes 47+-0 03 inD=2 and 4.080.09 inD=3 [8], obtained

ensemble of walks and the ensemble of aggregates with Vojising data of different small aggregates analyzed separately.
umeV). The accuracy of these estimates is around 1%. According to finite-size scaling, the same variablds

We propose the finite-size scaling relation expected to describe the finite-size behavior of other physical
quantities. For the mean number of distinct visited sites we
propose the relation

FIG. 1. Plot ofy=(R3)¥7V*2 versusx=VY2N~"w for random
walks on finite stages of construction of two-dimensional Eden
trees.

<R§>il//2% VllDf(VllDN_VW), (5)

i H H — \/1D N — vy vV
wheref is some function of the variabbe=V*~“N""w, and (Suv~ G ag(Vl’DN*VW). @
oN)
y=1/Dy,. (6)
WhenV— it is reasonable thatSy) does not depend on
This relation was already verified in deterministic fractalsV thUSQ(X_)NX_.D.Whe“X_“’O- Then Eq.(4) with D5 given
embedded in two and three-dimensional latti¢8ierpinski 0¥ EQ. (1) is satisfied. _
gaskets, carpets, and pastry shelis3] . In Figs. 3 and 4 we plat=(Sy)(InN)*/V versusx in two-
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FIG. 2. Plot ofy=(R2)Y¥%v? versusx=VY3N~"« for random FIG. 3. Plot ofz=(Sy)v(INN)*/V versusx=\V*?N~"w for ran-
walks on finite stages of construction of three-dimensional Ederdom walks on finite stages of construction of two-dimensional Eden
trees. trees.
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| | — T would give the asymptotic form(3) for (Sy) with

D,=2yD/D,,, which would not agree with relatioftl) if
01k ™. - v# 1. This hypothesis is not supported by our data for any
g'gg B AV = 20000 }[/atllue]c ofy(z;)th inD=2 andD =3, confirming the asymp-
.08 |- . _ = otic form (4).
i 0.04 =V = 30000 _ From Egs.(1), (2), and(4) we obtain a relation between
EN .~ ~V = 40000 the volume visited by the walkeY,;; and the accessible
% 002 L v, =0.26 1 volumeV,. within a radiusR:
£ n, 0=0.9 Vyis 1 ©
_Z 001 |- - Vac  (logR)*’
Z 0.008 - — ) _ .
9 4006 | _ As previously observefb-9|, the density of the set of vis-
b ited sites decreases faster than the density of accessible sites,
0.004 R but, as shown above, it occurs only with a logarithmic ratio
between these densities. Then the original assumption
0.002 s (V,is~Vac) is not correct, but the essential ingredients of the
' ' L ; s problem are captured and the final res@. (1)) is valid. It
3 4V1/53N‘6” 8 910 is also explained why an effective spectral dimension

De< D, must be found fitting data to E¢3). The compari-
son of the estimates @, in Table | and the previous ones
FIG. 4. Plot ofz=(S\)(INN)*/V versusx=VY3N~*w for ran-  [7,8] confirms this trend.
dom walks on finite stages of construction of three-dimensional The logarithmic corrections i{Sy) were already ex-
Eden trees. pected in two-dimensional Eden trees since an exponent
a=1 is present in the exact solution of two-dimensional
and three-dimensional Eden trees, respectively. The expdzuclidean lattices. The correction in three-dimensional Eden
nentsy,, are the previous central estimates, and the logarithtrees, however, is a surprising result. It opens the question of
mic correction exponenta are the ones which provide the the dependence of exponemton the fractal geometry. The
best collapses of curves for differevit Note that deviations results in some Sierpinski lattices (in the range 0.+ 0.5)
from a single curve occur only for large in the smallest suggested that it was more important in infinitely ramified
lattices, corresponding to smail. fractals[10], but the large values in the Eden trees, which are
Those plots prove the validity of relatiofY) for Eden finitely ramified, discard this hypothesis. Further investiga-
trees and consequently the validity of the asymptotic forntions will be necessary to find the origin of these corrections.

(4) with D given by the scaling relatiofil). The final esti- Previous estimates @ in DLAs also indicated a value
mates of the exponents are also shown in Table I. smaller than B¢/D,, [9]. Similar investigations would be
An alternative finite-size scaling relation interesting in these structures, which model various experi-
mental aggregates. Based on the discussion above, we expect
(S\)v=V7g(VIPN~"w) (8)  that it will confirm once more the scaling relati¢h).
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